Introduction

1. Microdrilling creates less bone compaction around the drilled holes.
2. Gives surgeon more control over the process.
3. Increases accuracy of surgery [1].
4. Created channels are expected to result in better healing response and improve the outcome of the treatment [2].
5. Effects on structural weakening are rather small.
6. Adaptive stress on bone is expected to be marginal.

Further experimental research will be necessary to identify the long-term effects of MD onto the bone and surrounding cartilage. Additionally, the changes of contact stiffness will be investigated computationally to study the changes in the cartilage as a result of MD. This should help to gain crucial information about microdrilling and its prospects to help people suffering from osteoarthritis.

Conclusion

1. Microdrilling creates less bone compaction around the drilled holes.
2. Gives surgeon more control over the process.
3. Increases accuracy of surgery [1].
4. Created channels are expected to result in better healing response and improve the outcome of the treatment [2].
5. Effects on structural weakening are rather small.
6. Adaptive stress on bone is expected to be marginal.

References

About the Project

T.S. Nava is an exchange student for Royal Institute of Technology KTH, Stockholm, doing his master’s degree thesis at the University of Cambridge in biomechanics.