

DEGREE PROJECT IN INDUSTRIAL ENGINEERING AND MANAGEMENT, SECOND CYCLE, 30 CREDITS *STOCKHOLM, SWEDEN 2020*

Surgical Microdrilling for Osteoarthritis Treatment

A Finite Element Study of Bone and Cartilage

TOBIA SEBASTIANO NAVA

KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT

www.kth.se

	Examensarbete T	RITA-ITM-EX 2020:244
VETENSKAP VETENSKAP OCH KONST	Kirurgisk mikrob beh	orrning för osteoartrit andling
KTH Industriell teknik och management	En finita element s	studie av ben och brosk
	Tobia Sel	bastiano Nava
	tsnav	/a@kth.se
Godkänt	Examinator	Handledare
2020-06-09	Ulf Sellgren	Elena Gutierrez Farewik
	ulfse@kth.se	lanie@kth.se
	Uppdragsgivare	Kontaktperson
	University of Cambridge	Michael Sutcliffe
		mpfs1@cam.ac.uk

Sammanfattning

Mikrofrakturering är i många fall en väl fungerande behandling av artros, (eng. Osteoarthritis). Mikrofrakturering innebär att man perforerar benet under det skadade brosket och på så sätt skapar blödningar. Blodet som genom blödningarna når leden innehåller stamceller som hjälper till vid återuppbyggnaden av det skadade brosket. Det är känt att mikrofrakturering påverkar ledens struktur, både mekaniskt och biologiskt, men i vilken omfattning leden påverkas är ännu inte fastställt.

Utifrån en litteraturstudie gjord på tidigare forskning inom ämnet mikrofrakturering och andra intilliggande områden kunde viktiga influerande parametrar fastställas. Efter litteraturstudien utfördes flera simuleringar med finita elementmetoden på ben- och broskstrukturer genom att utföra faktorförsök. Variansanalys (ANOVA) användes för att utvärdera resultaten och fastställa vilken påverkan de olika ingående parametrarna har. De olika parametrarna är; benstyvhet, bentjocklek, brosktjocklek och mikrofrakturering.

Resultaten visade att brosktjockleken är den parameter som har störst påverkan på ledens mekaniska beteende. Efter brosktjocklek kom bentjocklek och mikrofrakturering. Påfrestningarna i benet kan mer än fördubblas jämfört mot genomsnittet. Utifrån dessa iakttagelser kan slutsatsen dras att minskad broskmängd kraftigt påverkar det mekaniska beteendet hos en led. Det kan även påvisas att mikrofrakturering har en stor påverkan på benets struktur och att variationer i bentjocklek på grund av artros inte går att försumma.

En experimentell testrigg för att studera mikrofrakturering i ben hos möss togs fram. Målet med denna testrigg vara att kunna utföra mer användarvänliga försök med god repeterbarhet. Ett x-y bord designades och integrerades med ett lämpligt reglersystem bestående av stegmotorer och en Raspberry Pi reglerenhet.

Nyckelord: artros, benmärgsstimulering, FEM, mikrofrakturering, subkondral borrning

² VTH ³	Master of Science Thesis	TRITA-ITM-EX 2020:244
KTH Industrial Engineering and Management	Surgical Microdrilling for A Finite Element Study	Osteoarthritis Treatment of Bone and Cartilage
	Tobia Seba	stiano Nava
	tsnava	@kth.se
Approved	Examiner	Supervisor
2020-06-09	Ulf Sellgren	Elena Gutierrez Farewik
	ulfse@kth.se	lanie@kth.se
	Commissioner	Contact person
	University of Cambridge	Michael Sutcliffe
		mpfs1@cam.ac.uk

Abstract

Surgical microdrilling is a potential treatment method for many patients suffering from osteoarthritis (OA). During microdrilling, the bone underneath the damaged cartilage is perforated to induce bleeding. The blood that enters the joint contains stem cells which help to restore the damaged cartilage. Microdrilling is known to affect the joint structure both biologically and mechanically, but knowledge regarding its structural effects is still limited.

Based on literature review of previous research in microdrilling and adjacent areas, important influencing parameters were identified. Thereafter, a finite element study was performed simulating the bone and cartilage structures using a factorial design approach. Analysis of variance (ANOVA) was used to evaluate the results and to identify the relevance of the parameters: bone stiffness, bone thickness, cartilage thickness and microdrilling.

The results revealed that the cartilage thickness is the most relevant factor regarding its influence on the mechanical properties of the joint, followed by bone thickness and microdrilling. Stresses in the bone can increase more than two times the value from the baseline. Based on the findings, the conclusion can be drawn that loss of cartilage has a significant influence on the contact mechanics of a joint. Furthermore, microdrilling affects the bone structure significantly, and alterations in bone thickness due to OA are not negligible.

As a third element, an experimental test rig for studying microdrilling in mice was developed. The objectives of the development were to increase the user-friendliness and to enhance reproducibility. An actuated x-y table was designed including the corresponding control system using stepper motors and a Raspberry Pi.

Keywords: surgical microdrilling, FEM, subchondral drilling, osteoarthritis, marrow stimulation

To Nicole and my family.

Acknowledgements

I would like to thank my supervisor Prof. Michael Sutcliffe for giving me this great opportunity and for his support throughout the project. I also would like to thank Dr. Nan Li for her advice and support along the whole process. Furthermore, I would like to thank Prof. Andrew McCaskie, Dr. Mark Birch and Dr. Francesca Beaton for their helpful input and advice. Additionally, I would like to thank Simon Marshal for his technical guidance in the design of the test rig.

I also would like to thank Prof. Elena Gutierrez Farewik for awakening my interests in biomechanics and supporting me throughout this time.

Tobia Sebastiano Nava, June 2020

Table of contents

Lis	List of figures xv			XV
Lis	List of tables xix			
No	menc	lature	XX	dii
1	Intro	oduction	n	1
	1.1	Backgr	round	1
	1.2	Aims a	and Objectives	2
		1.2.1	Delimitations	3
2	Liter	ature I	Review	5
	2.1	Knee J	oint	6
		2.1.1	Function of the Knee	6
		2.1.2	Anatomy	6
			2.1.2.1 Bone	7
			2.1.2.2 Cartilage	9
	2.2	Articul	lar Cartilage	9
		2.2.1	Chondrocytes	11
		2.2.2	Extracellular matrix	12
	2.3	Osteoa	rthritis	14
		2.3.1	Cause	15
		2.3.2	Symptoms	15
		2.3.3	Disease Progression	15
	2.4	Micro	drilling	16
		2.4.1	Target Patient	17
		2.4.2	Procedure	17
		2.4.3	Biological Mechanism	18

		2.4.4	Outcome	8
		2.4.5	Combination of Treatments	9
			2.4.5.1 Collagen Matrix	9
			2.4.5.2 Stem Cells	0
		2.4.6	Depth of Microdrilling	1
		2.4.7	Diameter of Microdrilling	2
		2.4.8	Thermal Necrosis	2
		2.4.9	Changes in Microarchitecture	3
		2.4.10	Drill Geometry	3
		2.4.11	Conclusion	4
	2.5	Microf	racturing	4
		2.5.1	Procedure	4
		2.5.2	Outcome	5
		2.5.3	Conclusion	5
	2.6	Alterna	ative Surgical Methods	5
		2.6.1	Osteochondral Autografting	6
		2.6.2	Osteochondral Allografting	6
		2.6.3	Autologous Chondrocyte Implantation	6
	2.7	Mecha	nical Modelling of the Knee	7
		2.7.1	Descriptive Model	7
		2.7.2	Contact Mechanics	9
			2.7.2.1 Basics of Contact Mechanics	9
			2.7.2.2 Analytical Model	1
			2.7.2.3 Finite Element Model	2
	2.8	Experi	mental Studies of the Knee Mechanics	4
3	Com	putatio	onal Simulation of the Femoral Contact Mechanics 3	7
	3.1	Problem	m Definition	8
	3.2	Metho	dology	0
		3.2.1	Experimental Plan	0
			3.2.1.1 Parameters	0
			3.2.1.2 Measured Values	1
			3.2.1.3 Factorial Design	2
		3.2.2	Geometrical Model	4
		3.2.3	Material Model	5
		3.2.4	FE Model	7
			3.2.4.1 Mesh Generation	7

		3.2.4.2 Load and Boundary Conditions	48
		3.2.5 Analysis Method	49
	3.3	Results	50
		3.3.1 The Role of Microdrilling	55
		3.3.2 The Role of the Cortical Bone Thickness	59
		3.3.3 The Role of the Cortical Bone Stiffness	63
		3.3.4 The Role of the Cartilage Thickness	67
	3.4	Discussion	71
		3.4.1 Limitations	72
4	Deve	elopment of an Experimental Test Rig	73
	4.1	Problem Definition	75
	4.2	Requirement Specification	75
	4.3	Morphological Analysis	77
	4.4	Comparison of Solutions	79
	4.5	Test Rig Design	81
		4.5.1 Mechanical Design	81
		4.5.2 Control System Design	83
	4.6	Discussion	85
5	Con	clusion	87
	5.1	Outlook	88
Re	eferen	ces	91
Aŗ	opend	ix A Risk and Safety	99
_	A.1	Biological Risk Assessment	100
	A.2	Project Risk Assessment	108
Aŗ	opend	ix B Computational Simulation	109
	B .1	Factorial Design Settings for the Cartilage	109
	B.2	Factorial Design Settings for the Cortical bone	110
	B.3	Full Analysis of Variance for the First Factorial Design	111
	B.4	Full Analysis of Variance for the Second Factorial Design	114
Ap	opend	ix C Test Rig Design	117
	C .1	Circuit Diagram	117
	C.2	Assembly Drawing	117

List of figures

1.1	An overview over the different areas of microdrilling included into this thesis.	3
2.1	The main areas covered in the literature review.	5
2.2	The Synovial joint and its main components	7
2.3	Components of the knee joint.	8
2.4	The cortical and cancellous bone of the femur	9
2.5	The different layers of articular cartilage.	11
2.6	Proteoglycan aggregate and hyaluronan acid.	13
2.7	Microdrilling process visualised in four steps	17
2.8	Twist drill bit vs. Kirschner wire	23
2.9	Basic concept to get from an MRI scan to a simplified model	28
2.10	Hertzian contact between a sphere and a plane	31
2.11	Changes in articular cartilage loading before and after degeneration due to OA.	32
3.1	The main areas covered in the computational simulations.	37
3.2	Parameters of the microdrilling treatment.	39
3.3	Factorial design space	44
3.4	The simplified CAD model used for the simulations.	45
3.5	The different steps in FE modelling.	47
3.6	Graphical depiction of the resulting stresses.	52
3.7	Graphical depiction of the resulting strains.	53
3.8	Graphical depiction of the resulting displacements	55
3.9	Three cases of microdrilling illustrating the iso-surfaces	56
3.10	CDF for the microdrilling case showing the strain and stress distribution	57
3.11	Three cases of different cortical thickneesses illustrating the iso-surfaces	60
3.12	CDF for the cortical thickness case showing the strain and stress distribution.	61
3.13	Three cases of different cortical stiffnesses illustrating the iso-surfaces	63
3.14	CDF for the cortical stiffness case showing the strain and stress distribution.	65

3.15	Graphical depiction of the resulting reaction forces	68
3.16	CDF for the cartilage thickness case showing the strain and stress distribution.	69
4.1	The main elements of the test rig for experimental testing of mice	73
4.2	Test rig developed by Davidson (2019) including the different components.	74
4.3	Morphological analysis of the test rig	78
4.4	Mechanical design of the x - y table	81
4.5	Assembly drawing of the test rig	82
4.6	The graphical user interface with its functions	84
C.1	The circuit diagram for the Raspberry Pi and the motor controllers in parallel.	117

List of tables

2.1	Main components of articular cartilage
2.2	Risk Factors for osteoarthritis
2.3	Hertzian Contact Parameters
3.1	Design space for the cortical bone and the cartilage $\ldots \ldots \ldots \ldots \ldots 41$
3.2	Parameters from literature
3.3	Levels of the parameters
3.4	Cancellous bone an cartilage properties
3.5	The main effects of the stresses for both cortical and cancellous bone. \dots 51
3.6	The main effects of the strains for both cortical and cancellous bone 53
3.7	The main effects of the displacement for both cortical and cancellous bone. 54
3.8	The main effects of the cartilage simulations
4.1	Requirement list
4.2	Lead screw system vs. belt drive
4.3	Key specifications of the <i>x</i> - <i>y</i> table
A.1	Risk assessment
B .1	Settings from the factorial design for the cartilage leading to 9 different settings. 109
B.2	Factorial design settings for the cortical bone leading to 27 different settings. 110
B.3	ANOVA - stress of the first factorial design analysing the cortical bone 111
B.4	ANOVA - stress of the first factorial design analysing the cancellous bone 111
B.5	ANOVA - strain of the first factorial design analysing the cortical bone. $$ 112
B.6	ANOVA - strain of the first factorial design analysing the cancellous bone 112
B.7	ANOVA - displacement of the first factorial design analysing the cortical bone.113
B.8	ANOVA - displacement of the first factorial design analysing the cortical bone.113
B.9	ANOVA for the reaction force of the second factorial design
B.10	ANOVA - stress for the second factorial design in the cortical bone 114

B.11 ANOVA - stress for the second factorial design in the cancellous bone	114
B.12 ANOVA - strain for the second factorial design in the cortical bone	115
B.13 ANOVA - strain for the second factorial design in the cancellous bone	115
B.14 ANOVA - displacement for the second factorial design in the cortical bone.	115
B.15 ANOVA - displacement for the second factorial design in the cancellous bone.	.116

Nomenclature

Roman Symbols

Α	Contact area
Ε	Young's modulus or Elastic modulus
p_0	Hertzian contact pressure
r	Radius
Greek Symbols	
δ	Deformation
v	Possion's ratio

au Shear stress

Acronyms / Abbreviations

- ANOVA Analysis of Variance
- *BMP* Bone morphogenetic protein
- CAD Computer Aided Design
- *CDF* Cumulative Distribution Function
- CEBC Centre for Engineering Better Care
- CU University of Cambridge

CUED	CU Engineering Department
ЕСМ	Extra Cellular Matrix
ESC	Embryonic stem cells
FEM	Finite Element Method
FGF	Fibroblast growth factor
GUI	Graphical User Interface
IGF	Insulin-like growth factor
iPSC	Induced pluripotent stem cell
MD	Microdrilling
MSC	Mesenchymal Stem Cell
OA	Osteoarthritis
PBSC	Peripheral Blood Stem Cell

 $TGF - \beta$ Transforming growth factor- β